IMPLEMENTATION OF THE MODEL SAFE SCHOOL PROGRAMME IN THE CARIBBEAN

HAZARD RISK ASSESSMENT REPORT AND COSTED ACTION PLAN

THE ADELE SCHOOL FOR SPECIAL CHILDREN
ANTIGUA AND BARBUDA
SUBMITTED BY:
Environmental Solutions Limited

TO:
The Caribbean Disaster Emergency Management Agency Coordinating Unit

CARIBBEAN DISASTER EMERGENCY MANAGEMENT AGENCY COORDINATING UNIT
Resilience Way, Lower Estate
St. Michael
Barbados, W.I.

REPORT PREPARED BY ENVIRONMENTAL SOLUTIONS LIMITED

ENVIRONMENTAL SOLUTIONS LIMITED
7 Hillview Avenue
Kingston 10, Jamaica, W.I
Tel : (876) 978-9519, 978-6297, 978-5902
Fax : (876) 946-3745
E-Mail : envirsol@cwjamaica.com
Website : www.eslcaribbean.com

Original Submission Date: December 18, 2019
Revision Date: June 18, 2020
TABLE OF CONTENTS

1 **INTRODUCTION**
 1.1 PURPOSE 5
 1.2 METHODOLOGY 9
 1.2.1 HAZARD RISK ASSESSMENT 9
 1.3 LIMITATIONS 13

2 **COUNTRY RISK PROFILE/SITUATIONAL CONTEXT** 14

3 **HAZARD IDENTIFICATION/ASSESSMENT** 14
 3.1 WIND 15
 3.2 STORM SURGE 16
 3.3 FLOODING 17
 3.4 EARTHQUAKES 17
 3.5 TSUNAMI 18
 3.6 LANDSLIDES/INLAND EROSION 18
 3.7 DROUGHT 19
 3.8 CLIMATE PROJECTIONS 20

4 **EXPOSURE ANALYSIS** ... 20
 4.1 OTHER HAZARDS 25

5 **ADAPTIVE CAPACITY** .. 26
 5.1 DESCRIPTION OF STRUCTURE 31
 5.1.1 SITE OBSERVATIONS/DISCUSION 33

6 **VULNERABILITY ASSESSMENT** 34

7 **SUMMARY FINDINGS** ... 34

8 **COSTED ACTION / IMPROVEMENT PLAN** 37

9 **REFERENCES** ... 39

10 **APPENDIX 1** ... 40
 10.1 SAFETY ASSESSMENT 40
 10.2 PHOTOGRAPHS 41

APPENDIX 2:
- NATIONAL SAFE SCHOOL PROGRAMME COMMITTEE (NSSPC) MEMBERS 47

APPENDIX 3:
- ORGANIZATIONS CONSULTED 49
1. INTRODUCTION

Environmental Solutions Ltd. (ESL) has been contracted by the Caribbean Disaster Emergency Management Agency (CDEMA) to develop/enhance National Safe School Policies in four Caribbean Development Bank (CDB) Borrowing Member Countries (BMCs), conduct hazard assessments of 33 schools across six BMCs, and prepare costed action plans for each of the schools based on the results of the assessments.

This document presents the Hazard Risk Assessment Report and Costed Action Plan for the Adele School for Special Children, one of seven (7) schools assessed in Antigua and Barbuda (See Figure 1.1). The report forms a part of the second and fourth deliverables (D2 and D4) under this Consultancy, and has been divided into eight main sections. Section 1 describes the method and approach the consultants used to undertake the assessment. Section 2 outlines the Country Risk Profile which presents the natural hazards each country and school is exposed to. Sections 3 to 6 summarize the vulnerability analysis of the identified hazards and Sections 7 and 8 present the summary findings, proposed recommendations and the Costed Action Plan. The results of the school safety and green assessments are presented in the Appendices.

The following schools were visited by the assessment team on regular school days, and as such the consultants were able to assess the schools during normal operational conditions:

<table>
<thead>
<tr>
<th>SCHOOL NAME</th>
<th>LOCATION</th>
<th>DATE VISITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary E. Pigott Primary School</td>
<td>St. John’s</td>
<td>Tuesday</td>
</tr>
<tr>
<td></td>
<td>17° 6’56.30”N 61°50’8.84”W</td>
<td>May 14, 2019</td>
</tr>
<tr>
<td>Antigua Girls’ High School</td>
<td>St. John’s</td>
<td>Wednesday</td>
</tr>
<tr>
<td></td>
<td>17° 7’22.92”N 61°50’33.92”W</td>
<td>May 15, 2019</td>
</tr>
<tr>
<td>Golden Grove Primary</td>
<td>St. John’s</td>
<td>Wednesday</td>
</tr>
<tr>
<td></td>
<td>17° 6’23.77”N 61°50’31.83”W</td>
<td>May 15, 2019</td>
</tr>
<tr>
<td>Nelvie N. Gore Primary</td>
<td>Willikies</td>
<td>Thursday</td>
</tr>
<tr>
<td></td>
<td>17° 5’2.86”N 61°42’41.86”W</td>
<td>May 16, 2019</td>
</tr>
<tr>
<td>Ottos Comprehensive School</td>
<td>St. John’s</td>
<td>Friday</td>
</tr>
<tr>
<td></td>
<td>17° 6’55.74”N 61°50’5.07”W</td>
<td>May 17, 2019</td>
</tr>
<tr>
<td>Adele School for Special Children</td>
<td>St. John’s</td>
<td>Friday</td>
</tr>
<tr>
<td></td>
<td>17° 7’40.40”N 61°50’15.43”W</td>
<td>May 17, 2019</td>
</tr>
<tr>
<td>Buckleys Primary</td>
<td>Buckleys</td>
<td>Friday</td>
</tr>
<tr>
<td></td>
<td>17° 4’0.02”N 61°48’37.22”W</td>
<td>May 17, 2019</td>
</tr>
</tbody>
</table>
FIGURE 1.1: SCHOOL LOCATION MAP - ANTIGUA
Antigua

Name of School

Adele School for Special Children

Contour (m)

- 10
- 15
- 20
- 25
- 30

Created by:
Jason Williams - Data Manager, Department of Environment

Purpose: To identify location of school along with 5m interval contour

Date Created: 9 June 2019
ADELE SCHOOL FOR SPECIAL CHILDREN

Data sourced from the Environmental Information Management & Advisory System - EIMAS and/or data points collected in the field using GPS Technology. Base Map source: 2010 Aerial Imagery

Published by the Department of Environment, Ministry of Health & the Environment, Government of Antigua & Barbuda
The Model Safe School Programme (MSSP) Toolkit states that “in a region that is prone to various hazards, many schools may be located in hazardous locations. Wherever possible, Hazard and Vulnerability Assessments should be performed for schools to guide the inclusion of preparedness and mitigation measures in the design, construction and operational phases. Disaster and emergency planning should be founded on a thorough understanding of the specific hazards faced by the education sector in general and at the individual institutions.”

The purpose of this hazard risk assessment report is to identify and analyze the hazard vulnerability of the Adele School for Special Children and to make recommendations to inform decision-making.

1.1 PURPOSE

The Model Safe School Programme (MSSP) Toolkit states that “in a region that is prone to various hazards, many schools may be located in hazardous locations. Wherever possible, Hazard and Vulnerability Assessments should be performed for schools to guide the inclusion of preparedness and mitigation measures in the design, construction and operational phases. Disaster and emergency planning should be founded on a thorough understanding of the specific hazards faced by the education sector in general and at the individual institutions.”

The purpose of this hazard risk assessment report is to identify and analyze the hazard vulnerability of the Adele School for Special Children and to make recommendations to inform decision-making.

1.2 METHODOLOGY

The vulnerability assessment tool (VAT) draws on the methodology developed by the National Oceanic and Atmospheric Association (NOAA). Some adaptations were made to take into account the local situation as well as data quality and availability.

1.2.1 HAZARD RISK ASSESSMENT

The consultants undertook the hazard risk assessments through a 3-step process elaborated below.

1.2.1.1 STEP 1 - CHARACTERIZING HAZARDS

The assessments consisted of interviews with senior administrators, a site walk-through to make general observations and take pictures, as well as a building condition survey described below.

The results of the school assessments are found in Appendix 1.

These deliverables have been prepared for the Project Implementing Agency, CDEMA, as well as the National Safe School Programme Committee (NSSPC) and national focal point in Antigua and Barbuda. The list of NSSPC members are included in Appendix 2.
The first step involved the identification of the hazards (hydro-meteorological, geological, etc.) to which each of the countries, and by extension each school, may be exposed. To characterise hazards for each country, the Consultants conducted comprehensive desk research and stakeholder consultations with key agencies and various stakeholder groups (See Appendix 3) to acquire the necessary information, which included but was not limited to:

- Existing spatial data from local and regional Geographic Information Systems (GIS) databases e.g. Caribbean Risk Information System, CHARIM Handbook & Geo-node, PITCA, CARDIN etc.
- Multi-hazard maps, including:
 - Wind and cyclone hazard maps
 - Seismic zoning
 - Flood hazard maps
- Location of critical infrastructure and supporting infrastructure
- Historical and projected information on hazards for each country
- Damage history of each institution
- Previously conducted studies or country reports

Site visits were also conducted to the respective schools. These visits focused primarily on collecting physical infrastructure data and assessing the vulnerability of the facilities as they relate to the various hazards.

1.2.1.2 STEP 2 - EXPOSURE ANALYSIS AND ADAPTIVE CAPACITY

EXPOSURE ANALYSIS

Exposure analysis involved accessing various databases, including geospatial mapping using GIS, to identify the hazards to which the schools were exposed, as well as site assessments and discussions with stakeholders to ascertain history of hazard events.

Mapping hazard exposure enables stakeholders to visualise individual hazardous settings and identify cumulative hazard scenarios. This mapping also provides an effective tool to anticipate, plan and manage resources effectively in advance of these hazards. This geospatial framework is the foundation of the vulnerability assessment process.

The Consultants used the assessment tools from the MSSP toolkit to gather relevant information to help to inform exposure.
ADAPTIVE CAPACITY ASSESSMENT

The adaptive capacity for each school was determined by examining the characteristics that influence the school's capacity to prepare for, respond to and recover from hazards and disasters. The interaction between natural processes and the built environment is intrinsically linked, and it is the adaptive capacity that determines the risks and burdens created by hazards.

Some of the major factors assessed that influence adaptive capacity included:

- Are the proposed systems associated with each asset/facility designed to anticipate a hazard, cope with it, resist it and recover from its impact?
- Conversely, are there barriers to the ability to anticipate, cope, resist or recover?
- Are the systems associated with the school’s assets/facilities already stressed in ways that will limit their capacity to anticipate, cope, resist or recover?
- Is the rate of impact from hazards likely to be faster than the adaptability of the systems?
- Are there efforts already underway to address impacts of hazards of interest related to the school’s assets/facilities?

These variables outlined above were adopted for this project along with other indices. A systematic examination of building elements (as elaborated below), facilities, population and other components was carried out to identify features that are susceptible to damage from the effects of specific hazards. A qualitative scoring method was developed to determine the vulnerability of specific structures, exposed population and selected geographic areas. This data was analysed and used to prioritize mitigation activities and to guide disaster risk management within the schools.

The Consultants conducted targeted interviews with school administrators to identify gaps and needs for each school (institutional framework, physical infrastructure, human and financial resources). During the adaptive capacity analysis, the Consultants used the MSPP toolkit to identify gaps, needs and recommendations for capacity building measures and other interventions. Additionally, the Consultants provided a qualitative summary for each school.

Building Condition Assessment Methodology

The structural condition assessment was limited to visual observations and included both non-structural and structural-related issues. No finishes were removed to reveal hidden conditions, and no material or load tests were conducted to ascertain the structural capacity of the buildings' components. Moreover, the survey was limited to cursory inspection of electrical and mechanical systems such as ventilation, water services, plumbing and sewer utilities; egress, fire-suppression or fire rating of the building components.

As such, any comments offered regarding concealed construction are the professional opinions of the Consultants based on analyses, and our joint engineering experience and judgment, and are derived in accordance with the standard of care and practice for evaluations of building structures.
The following standard conditions assessment definitions were used in describing the general state of the elements.

Good condition:
- It is intact, structurally sound and performing its intended purpose.
- There are a few or no cosmetic imperfections.
- It needs no repairs and only minor or routine maintenance.

Fair condition:
- There are early signs of wear, failure or deterioration, although the feature or element is generally structurally sound and performing its intended purpose.
- There is failure of a sub-component of the feature or element.
- Replacement of up to 25% of the feature or element is required.
- Replacement of a defective sub-component of the feature or element is required.

Poor condition:
- It is no longer performing its intended purpose.
- It is missing.
- It shows signs of imminent failure or breakdown.
- Deterioration or damage affects more than 25% of the feature or element and cannot be adjusted or repaired.
- It requires major repair or replacement.

The above was used qualitatively in conjunction with CDEMA’s Enhanced Building Condition Assessment Tool (EBCAT) and the findings are contained in Section 5.1.

1.2.1.3 STEP 3 - VULNERABILITY ASSESSMENT

The data and information collected from Step 1 (Hazard Characterisation) and Step 2 (Exposure Analysis and Adaptive Capacity) were combined to determine how and where each school is vulnerable to hazards using the following formula:

\[
\text{HAZARD EXPOSURE} + \text{ADAPTIVE CAPACITY} = \text{VULNERABILITY}
\]
1.3 LIMITATIONS

This assessment represents a one-day snapshot of the schools visited that may or may not be the total depiction of what occurs daily. The team based its findings on the data provided and individual observations made during this one-day time frame. Please be mindful that this assessment is not binding but is merely an independent review to assist school officials in their quest to examine practices and procedures to better serve their student population. It is therefore incumbent upon the Ministry of Education, education officers and school staff to consider the report and determine what they believe is legitimate and critical to address when considering school safety management issues.

Comments in this report are intended to be representative of observed conditions. The consultants have made every effort to reasonably inspect and analyze the main structural components as well the non-structural components which form part of the building envelope. If there are perceived omissions or misstatements in this report regarding the observations made, we ask that they be brought to our attention as soon as possible so that we have the opportunity to address them fully and in a timely manner.
2. COUNTRY RISK PROFILE / SITUATIONAL CONTEXT

Multiple hazards impact Antigua and Barbuda, including storms, earthquakes and drought. The most common threat is the potential for hurricanes and tropical storms. Due to the size of the islands, a single storm has the potential for directly impacting the entire population. High winds and rainfall are the principal risk factors. The islands’ lack of significant topographic variability results in open exposures to the effects of wind and rain (GFDRR, 2010).

Earthquake hazards are also high, with a seismically active area of the Caribbean plate boundary located east of Barbuda. Landslide hazards are low. Inland flooding occurs in low-lying areas during heavy rain. There is no direct volcanic hazard, although the active Soufrière Hills volcano on Montserrat does occasionally deposit ash on Antigua and poses some tsunami hazard (CCRIF, 2013).

3. HAZARD IDENTIFICATION/ASSESSMENT

As with many other countries in the Caribbean, there are two broad categories of hazards that can cause potentially minor to significant impacts at any given time in Antigua and Barbuda. These are:

- Hydro-meteorological hazards
 - Hurricanes and Tropical Storms
 - Flooding
 - Drought
 - Storm Surge
 - Landslide

- Geological hazards
 - Earthquake
 - Volcano
 - Tsunami

Based on a review of reports, site visits and consultation with key stakeholders, the main hazards that affect the schools found within the project area are presented below.
3.1 WIND

Antigua and Barbuda has been exposed to a number of storms whose track has passed within 40 km of the two islands. These include notably intense storms which passed directly over the islands such as Donna (1960, Category 4); Luis (1995, Category 4); and Georges (1998, Category 3). Damages estimated in the aftermath of Luis, for example, were placed at approximately 2/3 of the country’s GDP (GFDRR, 2010). In 2017, Hurricane Irma hit the islands of Antigua and Barbuda with catastrophic effects. The storm’s eye passed directly over Barbuda exposing the island to the extraordinary eye wall winds for more than three hours. While out of the path of the eye, Antigua, located approximately 29 miles to the south of Barbuda, experienced tropical storm force winds. Compounding the situation, on September 18, Hurricane Maria (also a category 5 storm) affected the island of Antigua. Although Hurricane Maria did not make landfall, Antigua was exposed to the north-eastern quadrant of storm and experienced again tropical storm force winds and associated rainfall.¹

Figure 3.1: Antigua Wind / Hurricane Vulnerability by Return Period (Source: OAS, 2001)

The 10-year return period subjects the entire island to low vulnerability that is of the tropical storm and hurricane category 2 wind strength. Minimal damage would be expected. The 25-year return period would generate low vulnerability for most of the island with some sections of the southern range experiencing moderate vulnerability. This would create hurricane category 2 winds and moderate damage. For the 50-year return period most of Antigua would be of moderate vulnerability. The western coast would have a low vulnerability with sections of the southern coast subjected to high vulnerability. Category 3 and 4 winds would be expected with extensive and extreme damage. The 100-year storm would place most of the island within the high vulnerability zone. The western third of the island and pockets in the central and eastern districts would have a medium vulnerability. Category 4 winds with extreme damage would be expected (OAS, 2001).

3.2 STORM SURGE

Figure 3.2 indicates storm surge vulnerability by return period. It indicates that for the 10-year period the entire coast with the exception of the Fitches Creek / Parham Harbour area would experience low storm surge vulnerability. It would be similar to that experienced in a tropical storm with some damage and surge to the heights of 0.1 to 0.5 meters. The Fitches Creek / Parham Harbour area would experience medium storm surge vulnerability with surge varying between 0.5 and 1.5m minimal damage.

The 25-year return period would place most of the coast within a moderate vulnerability storm surge zone and the southwestern section of Parham Harbour would be subjected to High vulnerability. Intrusions of moderate storm surge would be expected in the Hanson’s Bay and Jolly Harbour areas. The sea would surge in Parham Harbour to 3.0 meters and cause extensive damage. The 50-year return period increases the area of intrusion around Parham Harbour, Hanson’s Bay and Jolly Harbour. The 100-year return period increases the vulnerability of the Hanson’s Bay area to high and results in high storm surge throughout Parham Harbour (OAS, 2001).
3.3 FLOODING

Most of the island has been categorized as a low vulnerability zone for flooding. Flooding occurs in the communities of Point, Grays Farm, Bendals, Urlings and Piggots due mainly to poor drainage in these areas [Kairi Consultants Limited, 2007b]. Figure 3.3 shows a Flood Map for Antigua. Important areas are described as follows. The floodplain of Cooks Creek Watershed, seen in dark blue on the diagram is defined as a very high flood zone area. In yellow, are three high flood hazard zone areas and in pink in the central north is a moderate flood hazard zone. Codrington, Barbuda’s main city is also located in a high hazard flood zone.

3.4 EARTHQUAKES

Antigua and Barbuda are regularly exposed to seismic risk and are located in seismic zone 4 (on a 0-4 scale), a high-risk earthquake zone. The islands are located along the eastern margin of the Caribbean plate and as recently as 1974, were hit with a 7.5-magnitude earthquake which caused structural damages estimated in the millions [GFDRR, 2010].
3.5 Tsunami

While tsunamis are not considered a major recurrent risk for the region, the low-lying nature of the islands would make them particularly vulnerable to storm surge and tsunamis. Tsunami risk is generally associated with the potential effects of an eruption of Kick-‘em-Jenny located 500 km south of Antigua. Reports on the 1939 eruption indicate that a 2-meter tsunami was generated (GFDRR, 2010).

3.6 Landslides / Inland Erosion

Landslides are not a pressing problem in Antigua and Barbuda, but flooding represents a significant risk to the islands. Internal drainage from development has contributed to some flooding events; however, the greatest risk is from storm surge and wave action. Low elevations coupled with deeply intrusive bays provide ample opportunity for flood events to occur (GFDRR, 2010).

FIGURE 3.4: HAZARD OF GULLYING, LANDSLIDE AND ROCKFALL – ANTIGUA (SOURCE: OAS, 2001)

Figure 3.4 indicates that the areas with the highest vulnerability to inland erosion are located within the southwestern half of Antigua. Mainly woodland and rough grazing occupy the zones with high and very high vulnerability to inland erosion. Some central settlements such as Potter’s, Sea View Farm and Freeman’s are located within these zones. The condition of roads in these areas is adversely affected by erosion (OAS, 2001).
3.7 DROUGHT

Antigua and Barbuda are two of the driest islands in the region owing to their geographic position and topographic features (MPUHATIT, 2001; USACE, 2004). This is due to the geology of the islands, which consists largely of limestone plains. As much of the topography is relatively low-lying, these islands lack a significant stream network. Groundwater is the principal source for freshwater which is recharged by direct infiltration of rainwater through the surface. The islands have added desalination systems to augment freshwater supplies (GFDRR, 2010).

In Antigua and Barbuda, drought is defined as the occurrence of less than 826 mm of rainfall in a given year. The annual rainfall for Antigua ranges from 890 to 1,400 mm and from 508 to 991 mm in Barbuda, with the dry season spanning December to April (USACE, 2004). Additionally, potential evaporation rates are high, being higher than precipitation for roughly 11 months of the year (USACE, 2004). Increasing variability in rainfall patterns also contributes to drought conditions.

The country has a history of drought events and water shortages particularly in the 1960’s, but also in 1983, 1993-1994 and 2001-2002 (Meade and Destin, 2008; USACE, 2004). Between 1983 and 1984 water had to be brought via barges from neighbouring islands (USACE, 2004). The 2001 – 2002 drought periods were so intense that Potworks Reservoir was 85% below its average volume in September 2002 (USACE, 2004). The recurrence of drought in Antigua and Barbuda is estimated at once in every three years (Meade and Destin, 2008). However, Barbuda is usually worse affected. Between 1965 and 2000, annual rainfall records indicate totals less than 706 mm for ten years (USACE, 2004). During the dry season groundwater resources can be as low as 30% of yield potential and desalination output can be as high as 83% of demand (USACE, 2004). In Barbuda, drought conditions affect wells and therefore ground water, as they are prone to over pumping and saltwater intrusion (USACE, 2004). Tourism is one of the main revenue generators in Antigua and Barbuda accounting for 60% of GDP (ECLAC, 2007) and is also a heavy water using sector. Sea level rise (SLR) is expected to place additional burden on water supplies due to the threat of saltwater intrusion of coastal aquifers (MPUHATIT, 2001).

The northeast and southwest of Antigua are most vulnerable to drought. The eastern and western areas are within a high zone of vulnerability. The southeast of Antigua between English Harbour and St. James Club has been identified as the watershed most vulnerable to drought (OAS, 2001).
3.8 CLIMATE PROJECTIONS

Antigua and Barbuda is already experiencing some of the effects of climate variability and change through damage from severe weather systems and other extreme events, as well as more subtle changes in temperature and rainfall patterns (CARIBSAVE, 2012).

Detailed climate modelling projections for Antigua and Barbuda predict:

- an increase in average atmospheric temperature;
- reduced average annual rainfall;
- increased Sea Surface Temperatures (SST); and
- the potential for an increase in the intensity of tropical storms.

And the extent of such changes is expected to be worse than what is being experienced now.

4. EXPOSURE ANALYSIS

The term exposure is used to indicate those elements-at-risk that are subject to potential losses. Important elements-at-risk that should be considered in analyzing potential damage of hazards are population, building stock, essential facilities and critical infrastructure. Critical infrastructure consists of the primary physical structures, technical facilities and systems which are socially, economically or operationally essential to the functioning of a society or community, both in routine circumstances and in the extreme circumstances of an emergency (UN-ISDR, 2009).

This exposure analysis involves developing a hazard profile for the school by assigning ratings (from 0 to 3) to the parameters listed in Table 4.1 below and averaging the parameter scores for each hazard. Based on the average scores, the school is characterized by the degree of exposure to each hazard and further assigned an Overall Exposure Index (sum of the average scores for all hazards).

The objective is to quantify the school’s level of exposure and subsequently the potential impact (direct or indirect) of a specific hazard on people, essential facilities, and property. This will enable school administrators, the Ministry of Education and other key decision makers to have a better understanding of the hazards that present the highest risk to the school and focus planning efforts on making schools safer in this context.

Based on the rankings given, the school is characterized by the degree of exposure to each hazard and further assigned an overall exposure index of Low, Moderate or High:

<table>
<thead>
<tr>
<th>OVERALL EXPOSURE INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
</tr>
<tr>
<td>5 - 9</td>
</tr>
<tr>
<td>10 - 14</td>
</tr>
<tr>
<td>15 - 19</td>
</tr>
<tr>
<td>20 - 24</td>
</tr>
</tbody>
</table>
The consultants used existing data and available hazard maps to determine the level of exposure of the school to specific hazards. Table 4.2 presents the findings of the exposure analysis.
<table>
<thead>
<tr>
<th>HAZARD</th>
<th>COMMENTS</th>
<th>FREQUENCY</th>
<th>WARNING TIME</th>
<th>SEVERITY</th>
<th>DEGREE OF EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RANKING</td>
<td>SCORE</td>
<td>RANKING</td>
<td>SCORE</td>
<td>RANKING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurricanes and Tropical Storms/Wind</td>
<td>The most common threat is the potential for hurricanes and tropical storms.</td>
<td>Likely 2</td>
<td>More than 24 hours</td>
<td>0</td>
<td>Catastrophic 3</td>
</tr>
<tr>
<td>Storm Surge</td>
<td>Based on its relative distance from the coast and elevation above sea level (between 20-25m AMSL), the Adele School for Special Children is not considered to be exposed to storm surge risk.</td>
<td>Unlikely 0</td>
<td>NOT EXPOSED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flooding (from hurricanes, storms or extreme rainfall events)</td>
<td>St. Johns is located in a “Very Low Risk” flood hazard zone, but flash-flooding due to very heavy rainfall is possible. The school has experienced flooding in the recent past.</td>
<td>Likely 2</td>
<td>6-12 hours</td>
<td>2</td>
<td>Limited 1</td>
</tr>
<tr>
<td>Earthquake</td>
<td>Antigua and Barbuda is located in a “high risk” earthquake zone.</td>
<td>Likely 2</td>
<td>Minimal (or no warning)</td>
<td>3</td>
<td>Critical 2</td>
</tr>
<tr>
<td>Tsunamis</td>
<td>Tsunami is not considered a major recurrent risk. Based on its relative distance from the coast and elevation above sea level (between 20-25m AMSL), the Adele School for Special Children is not considered to be exposed to tsunami risk.</td>
<td>Unlikely 0</td>
<td>NOT EXPOSED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4.2: EXPOSURE ANALYSIS – ADELE SCHOOL FOR SPECIAL CHILDREN

<table>
<thead>
<tr>
<th>HAZARD</th>
<th>COMMENTS</th>
<th>FREQUENCY</th>
<th>WARNING TIME</th>
<th>SEVERITY</th>
<th>DEGREE OF EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landslide /Inland Erosion</td>
<td>The school is considered to be located in the “moderate” hazard zone for gullying, landslide and rockfall. (See Figure 3.4) This school can also be described as marginally exposed to the landslide hazard as a result of adjacent excavated earthen embankments. (See Appendix 2).</td>
<td>Possible 1</td>
<td>6-12 hours</td>
<td>Limited 1</td>
<td>MODERATE 1.33</td>
</tr>
<tr>
<td>Drought</td>
<td>The recurrence of drought in Antigua and Barbuda is estimated at once in every three years.</td>
<td>Highly Likely 3</td>
<td>More than 24 hours</td>
<td>Limited 1</td>
<td>MODERATE 1.33</td>
</tr>
<tr>
<td>Volcano</td>
<td>There is no direct volcanic hazard, although the active Soufrière Hills volcano on Montserrat does occasionally deposit ash on Antigua and poses some tsunami hazard.</td>
<td>Unlikely 0</td>
<td>–</td>
<td>–</td>
<td>NOT EXPOSED</td>
</tr>
</tbody>
</table>

OVERALL EXPOSURE INDEX 8.33

Based on the above, the overall multi-hazard exposure was determined to be **low**.

While the development of the modern building code has progressed, many of the schools assessed were built before the adoption of modern building codes, placing them at great risk for hurricane damage. Technologies exist today that allow older buildings to be retrofitted to become more hurricane resistant. Examples of these technologies include reinforcing gabled roofs, creating secondary water barriers in roofs, and installing hurricane straps and clips to ensure a roof stays in place despite high winds.

The Adele School for Special Children was assessed against its National Building Code which is common for the Organisation of Eastern Caribbean States (OECS) territory. The most serious area of deficiency was the Aluzinc roof covering on some of the buildings which appeared to lack the appropriate metal flashing especially at the gable ends. The main roof structures were found to be in generally good condition.
Flood mitigation was identified as a definite necessity in this and many of the schools assessed throughout the region. Due to the nature of the flood hazard, it cannot be addressed in isolation of its immediate environs and more generally, the storm water management of each school should be analyzed in the context of the run-off characteristics of the water catchment in which it is located. This may mean that focusing only on the school in attempting to resolve the flooding problem may not yield the required results. Community-based initiatives with specific focus on empowerment of the local community, and linking the community based activities to local development policies may be more effective.

Landslide risk assessment (exposure) is often a difficult task due to the lack of temporal data on landslides and triggering events (frequency), landslide magnitude and vulnerability. The probability of occurrence of landslides is often very difficult to predict, as well as the expected magnitude of events, due to the limited data availability on past landslide activity. For the purposes of this assignment therefore a simplified qualitative procedure for assessing the exposure of elements at risk is presented. The procedure involves responding to the following two considerations: 1) does the topography in the immediate surroundings rise or fall sharply and 2) if yes, will slope stabilization be recommended.

This will require personnel with the relevant competencies to respond. The results obtained should allow the schools to be ranked in terms of increasing exposure and risk level and, consequently, to identify the priorities for designing appropriate landslide risk mitigation plans.

This school can be described as only marginally exposed to the landslide hazard as a result of the adjacent excavated earthen embankments (See Figure 4.1).

FIGURE 4.1: ADJACENT EXCAVATED EARTHEN EMBANKMENTS (POTENTIAL LANDSLIDE HAZARD)
Seismic hazard may or may not be mitigated. For example, fault rupture and ground motion cannot be mitigated because tectonic movement (the main cause of earthquakes) cannot be stopped, but liquefaction at a site can be mitigated by engineering measures. Seismic risk can be reduced through either mitigation of seismic hazard or reduction of exposure or both. For the purposes of this assignment the assessment was concerned more with building form and to a lesser extent soil type as it relates to susceptibility of liquefaction.

It is recommended that a detailed structural analysis be conducted if ‘as-built’ drawings do not exist. It is based on that analysis that a determination of the need to retrofit will be made.

4.1 OTHER HAZARDS

Comprehensive school emergency planning utilizes an “all-hazards” approach, which considers a wide range of possible threats and hazards. It includes those that might take place in the community and surrounding area that could impact the school. Examples include:

1. **Technological Hazards**
 - Hazardous materials in the community from industrial plants, major highways or railroads
 - Hazardous materials in the school e.g. gas leaks, sewage breaks or laboratory spills
 - Infrastructure failure e.g. dam, electricity, water, communications or technology systems

2. **Biological Hazards**
 - Infectious diseases
 - Contaminated food outbreak
 - Water contamination
 - Toxic materials present in schools e.g. mould, asbestos, substances in school science laboratories

3. **Adversarial, Incidental and Human-Caused Hazards**
 - Fire
 - Medical Emergency
 - Intruder
 - Active shooter/Threats of violence
 - Fights
 - Gang violence
 - Bomb threat
 - Child abuse
 - Cyber attack
 - Suicide
 - Missing student or kidnapping
 - Off-site emergencies
 - Dangerous animal
 - Riots
Disaster researchers agree that, for children with disabilities, vulnerability in facing hazards (both natural and otherwise) can be exacerbated by factors that include mobility difficulties, pre-existing medical conditions, and existing social and physical structures and policies. Another crucial factor is that people and children with disabilities are often overlooked during emergency preparations and in DRR policy at large, leaving them unprepared for an emergency.

It is recommended that the school determine which of the above are priority hazards to be included in the Safety Plan, and also ensure that the Plan specifically includes considerations for persons with disabilities.

5. ADAPTIVE CAPACITY

The adaptive capacity analysis describes the ability of the school to accommodate potential damage, to take advantage of opportunities, or to respond to consequences with minimum disruption or minimum additional cost (Climate Impacts Group, King County, Washington, and ICLEI-Local Governments for Sustainability, 2007). It describes the capacity of the school to learn from previous experiences and to apply those lessons to cope in future.

In the context of what each school may be exposed to (see Section 3), the analysis below, among other things, seeks to determine:
- If the school is already able to accommodate changes
- If there are any barriers to the school to accommodate changes
- If the rate of the projected change is likely to be faster than the adaptability of the school
- If there are efforts already underway to address impacts of various hazards in the school

To develop an overall index of adaptive capacity, 24 indicators were selected and grouped according to five determinants of adaptive capacity in the context of climate change and variability. The indicators were selected using information garnered using the MSSP toolkit checklists, interviews and desk review of other existing data and information (Smit et al 2001, Yohe and Tol, 2002). The index was calculated by first aggregating the scores for the individual indicators to obtain a determinant value, which were then aggregated to an overall score to obtain an Overall Adaptive Capacity Index.
This approach provides a holistic perspective on the school’s ability to plan for, design and implement effective adaptation strategies or to react to evolving hazards and stresses which may ultimately reduce the likelihood of the occurrence and or the severity of harmful outcomes resulting from hazards.

<table>
<thead>
<tr>
<th>DETERMINANT</th>
<th>RATIONALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td>■ Greater economic resources increase adaptive capacity</td>
</tr>
<tr>
<td></td>
<td>■ Lack of financial resources limits adaptation options</td>
</tr>
<tr>
<td>Information and skills</td>
<td>■ Lack of informed, skilled and trained personnel reduces adaptive capacity</td>
</tr>
<tr>
<td></td>
<td>■ Greater access to information increases likelihood of timely and appropriate adaptation</td>
</tr>
<tr>
<td>Infrastructure and Technology</td>
<td>■ Lack of technology limits range of potential adaptation options</td>
</tr>
<tr>
<td></td>
<td>■ Less technologically advanced regions are less likely to develop and/or implement technological adaptations</td>
</tr>
<tr>
<td></td>
<td>■ Greater variety of infrastructure can enhance adaptive capacity, since it provides more options</td>
</tr>
<tr>
<td></td>
<td>■ Characteristics and location of infrastructure also affect adaptive capacity</td>
</tr>
<tr>
<td>Institutional</td>
<td>■ Well-developed social institutions help to reduce impacts of climate-related risks and therefore increase adaptive capacity</td>
</tr>
<tr>
<td></td>
<td>■ Policies and regulations may constrain or enhance adaptive capacity</td>
</tr>
<tr>
<td>Physical/Ecological</td>
<td>■ Elements of the physical or ecological environment of a region may enhance or limit the possibilities for adaptation</td>
</tr>
</tbody>
</table>
TABLE 5.2: SUMMARY OF ADAPTIVE CAPACITY ANALYSIS – ADELE SCHOOL FOR SPECIAL CHILDREN

<table>
<thead>
<tr>
<th>DETERMINANT</th>
<th>INDICATOR</th>
<th>SCORE</th>
<th>COMMENTS</th>
</tr>
</thead>
</table>
| Institutional | 1. Is there a national policy on climate change adaptation and/or comprehensive disaster management (or related) for the education sector? [YES = 1; NO = 0] | 1 | The following represent some of the many national policies in place that address climate change adaptation and comprehensive disaster management for the education sector:
- The Disaster Management Act of 2002
- Antigua and Barbuda’s National Plan to Reduce the Vulnerability of School Buildings to Natural Disasters [1998]
- Signatory to Antigua and Barbuda Declaration on School Safety in the Caribbean |
<p>| | 2. Have there been additions to the curriculum that integrate climate change/disaster preparedness/emergency management? [YES = 1; NO = 0] | 1 | |
| | 3. Is an updated emergency management or disaster management plan in place? [YES = 1; NO = 0] | 0 | At the time of the assessment, the plan was still being drafted. |
| | 4. Do the plans address priority hazards based on previous assessment(s)? [YES = 1; NO = 0] | 0 | A template for a Disaster Plan was provided to the school by the Education Officer. It is therefore not based on any hazard assessment conducted by the school. |
| | 5. Is there a designated environmental/health & safety officer, emergency response team or related position/team? [YES = 1; NO = 0] | 1 | There is a designated point person for disaster management (this staff member works closely with NODS as an assistant shelter manager, and attends regular training exercises). |
| Information and Skills | 6. Has the school done a walk through to identify and prioritize hazards for the population and visitors? [YES = 1; NO = 0] | 0 | |
| | 7. Are all teachers and school staff assigned roles in the overall response, pre-, during and post-hazard event? [YES = 1; NO = 0] | 0 | |
| | 8. Have staff received training in emergency/disaster management? [YES = 1; NO = 0] | 1 | Most, if not all teachers, have received training in both First Aid and CPR. |</p>
<table>
<thead>
<tr>
<th>DETERMINANT</th>
<th>INDICATOR</th>
<th>SCORE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information and Skills</td>
<td>9. Are there regular drills with staff, students and/or parents?</td>
<td>0</td>
<td>Drills have been conducted in past years but have not been done recently. These included fire and earthquake drills.</td>
</tr>
<tr>
<td></td>
<td>10. Is the school able to manage an event independently if help is not immediately available? E.g. fire extinguishers, first aid kits, triage?</td>
<td>1</td>
<td>A fire extinguisher and 2 first aid kits are available. A full-time nurse is present on staff.</td>
</tr>
<tr>
<td>Infrastructure and Technology</td>
<td>11. Does the school have reserve water storage with adequate supply for at least 3 days?</td>
<td>1</td>
<td>It was reported that one truck load does not fill the cistern and can last for about one week. There are also 2 additional storage tanks.</td>
</tr>
<tr>
<td></td>
<td>12. Does the school employ water conservation strategies to adapt to current usage or plan for future changes to water supply?</td>
<td>1</td>
<td>Antigua is drought prone as such water conservation is innately practiced.</td>
</tr>
<tr>
<td></td>
<td>13. Does the school actively harvest rainwater?</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Does the school employ energy conservation/efficiency mechanism?</td>
<td>0</td>
<td>Even though there are solar panels at the school, it is not understood whether this power is fed to the grid and/or benefits the school directly. The school reports that they still experience power outages.</td>
</tr>
<tr>
<td></td>
<td>15. Is there back up electrical power?</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. Does the school employ other green practices? E.g. recycling, greenhouse/garden, green policy etc?</td>
<td>1</td>
<td>There is a school garden. The school has also recently been adopted by Sandals Foundation and JCI Antigua and there are plans in place to do more greening initiatives.</td>
</tr>
</tbody>
</table>
TABLE 5.2: SUMMARY OF ADAPTIVE CAPACITY ANALYSIS – ADELE SCHOOL FOR SPECIAL CHILDREN

<table>
<thead>
<tr>
<th>DETERMINANT</th>
<th>INDICATOR</th>
<th>SCORE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure and Technology</td>
<td>17. Can the building withstand the impacts of a hazard in its current condition? [YES = 1; NO = 0]</td>
<td>1</td>
<td>Buildings are in generally fair condition.</td>
</tr>
<tr>
<td></td>
<td>18. Have school buildings/plant been repaired or retrofitted to the building code? [YES = 1; NO = 0]</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Physical/Ecological/Climate</td>
<td>19. Physical or ecological limits? E.g. Does the landscape/physical location/age range and size of the school population limit the range of adaptation options to priority hazards? [YES = 1; NO = 0]</td>
<td>0</td>
<td>Yes, the school is limited by its physical location/landscape. The Adele School for Special Children is located in an urban area beside a main road, cemetery, and on a slope (land beside the school is at a higher elevation). Available space on the school compound is a limiting factor as well.</td>
</tr>
<tr>
<td></td>
<td>20. Is climate change likely to exacerbate any of the current hazards? [YES = 1; NO = 0]</td>
<td>0</td>
<td>Particularly drought caused by increased temperatures and rainfall variability, and flooding caused by more intense rainfall events.</td>
</tr>
<tr>
<td></td>
<td>21. Is the rate of climate change likely to outpace adaptation efforts? [YES = 1; NO = 0]</td>
<td>1</td>
<td>Not necessarily as there are available technologies, however cost may be the limiting factor.</td>
</tr>
<tr>
<td>Technological</td>
<td>22. Technological limits? Availability of technological options for adaptation e.g. public address system for warning/early warning; electronic data storage. [YES = 1; NO = 0]</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5.2: SUMMARY OF ADAPTIVE CAPACITY ANALYSIS – ADELE SCHOOL FOR SPECIAL CHILDREN

<table>
<thead>
<tr>
<th>DETERMINANT</th>
<th>INDICATOR</th>
<th>SCORE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td>23. Financial barriers? E.g. Lack of resources may limit the ability of some schools to afford proposed adaptation mechanisms. [YES = 1; NO = 0]</td>
<td>0</td>
<td>The school is government owned so available funding is limited.</td>
</tr>
<tr>
<td>Information and Skills</td>
<td>24. Information or cognitive barriers (individuals tend to prioritize the risks they face, focusing on those they consider – rightly or wrongly – to be the most significant to them at that point in time)? E.g. concern about one type of risk is heightened while worry about other risks decreases; lack of experience of climate-related events inhibits adequate responses. [YES = 1; NO = 0]</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL 12 MODERATE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.1 DESCRIPTION OF STRUCTURE

The investigation consisted of a visual review of the exterior and interior elements such as walls, slab, columns and beams as well as a general walk-through to examine the existing cracks and other defects which may exist. The results of the building condition assessment are presented below.
<table>
<thead>
<tr>
<th></th>
<th>BUILDING 1</th>
<th>BUILDING 2, 3 & 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Storeys per Building:</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Floor Type:</td>
<td>Description: Reinforced concrete.</td>
<td>Description: Reinforced concrete.</td>
</tr>
<tr>
<td></td>
<td>Observation: Floor slab in generally good condition.</td>
<td>Observation: Floor slab in generally good condition.</td>
</tr>
<tr>
<td>Wall/Partition Type:</td>
<td>Description: Reinforced masonry in fair condition. Hairline cracks were not uncommon.</td>
<td>Description: Timber panels in reasonably good condition.</td>
</tr>
<tr>
<td>Roof Structure:</td>
<td>Description: Steel structure in generally good condition.</td>
<td>Description: Timber structure in generally good condition.</td>
</tr>
<tr>
<td>Roof Covering:</td>
<td>Description: Aluzinc sheets in generally good condition.</td>
<td>Description: Aluzinc sheets in generally good condition.</td>
</tr>
<tr>
<td>Repairs/ Retrofitting Conducted:</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Is there Disabled Access/ Special Needs Access to the Building?</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Approx. Age of Each Building</td>
<td>More than 40 years</td>
<td>More than 40 years</td>
</tr>
<tr>
<td>Building Use</td>
<td>Classrooms, Toilets</td>
<td>Classrooms, Toilets and Storage</td>
</tr>
<tr>
<td>Overall Condition</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
5.1.1 SITE OBSERVATIONS / DISCUSSION

EXTERIOR

WALLS
There were some signs of water ingress through the external walls that may be porous, and the affected areas can be corrected by undertaking repairs to cracks in external walls.

SLAB & BEAMS
Slab and beams were found to be in generally good condition.

COLUMNS
Columns were found to be in good condition generally.

INTERIOR

WALLS
Interior walls were of both masonry and timber. Masonry walls were in good condition as were the timber panels.

WINDOWS
Windows were in fair condition.

DOORS
Doors were in fair condition.

GENERAL CONDITION
The summary of the main findings is as follows:

1. There is the need to repair roof and roof drainage as there are signs of inadequate fixings at gable ends of main building.
2. There were some signs of water ingress through cracks in the external walls.
3. Windows should be upgraded in order to ensure compliance with hurricane resistant standard.
4. Storm water drainage system needs to be enhanced and regularly monitored and maintained.
5. Based on the observations, there is no immediate concern about the structural integrity of the building. It is anticipated that the building should perform adequately for its life. Nonetheless, it is recommended that the observed defects be remedied.
6. VULNERABILITY ASSESSMENT

The final step in the vulnerability assessment process is to combine the findings of exposure and adaptability to determine how and where the school is vulnerable. It is important to note that the vulnerability assessment does not remain static, it can improve or worsen with time. Changes can occur within the school, such as implementation of preparedness activities, and/or new threats may emerge. These can all influence the school's overall vulnerability.

The Adele School for Special Children has been classified as having an **overall low hazard exposure** (Table 4.2). The analysis of the adaptive capacity (Table 5.2) revealed that while the school may have some barriers and limitations, their capacity to adjust to change (induced by the hazards to which they are exposed), moderate potential damages, take advantage of opportunities, and/or to cope with the consequences is **moderate**.

While the administration has taken active measures towards disaster management and the physical plant of the school has not been structurally compromised, there are additional strategies that the school can employ to improve their adaptive capacity, however these may come at significant cost (presented in Section 8). As the school is government funded, this may further constrain the school’s capacity to adapt. As such, Adele School for Special Children can be characterised as having **moderate vulnerability**.

7. SUMMARY FINDINGS

The Adele School for Special Children is unique, in that the students range in age from 5 to 20 years old. The number of students broken down by sex is included in Table 10.1 in Appendix 1. The CDEMA Model Safe Schools toolkit was designed to assess four (4) specific types of schools i.e. Pre-Primary, Primary, Secondary and Tertiary. The Adele School is neither of these, and as such, the school was not scored against the toolkit standard. The findings below however do relate to the main safety themes of the MSSP Toolkit which are: Disaster Planning; Emergency Planning; Safety Administration; Medical Emergencies; Physical Plant; Physical Safety; Protection of the Person and Hazardous Chemicals and Materials. The overarching green themes are: Sustainability Management; Natural Resources, Indoor Environment, Hazardous Chemicals and Materials, Facility and Grounds and Food Service.

Based on the observations, there is no immediate concern about the structural integrity of the buildings. Once the remedial works are undertaken the structural integrity and useful life of the buildings should be greatly enhanced.

KEY STRENGTHS:

The Adele School for Special Children possesses some of the key elements to ensure quality education for children with disabilities⁴. These include:

- **Physical accessibility** – the buildings are all single storey, classrooms are wheelchair accessible – no steps required to enter, handles and railings were observed in the bathrooms.
- **Class sizes are relatively small.**
- **Several teachers are trained in special education.**
The school also has the following in place:

- Water storage – underground cistern and additional storage tanks.
- School practices rainwater harvesting.
- A disaster plan is in the process of being prepared.
- There is a designated point person for disaster management (works closely with NODS as an assistant shelter manager, and attends training).
- There is a fulltime nurse on staff.
- Many teachers are trained in first aid and CPR.
- Have conducted fire and earthquake drills in the past.
- There is a designated assembly point – basketball court.
- The school has a small garden – also recently worked on a proposal to partner with Sandals Foundation to do a garden project.
- Solar panels are on the roof – though administration is not sure who installed it or if they are maintained, the school still experiences black outs.
- Emergency contact lists are kept up to date - Most teachers have family contact info and class Whatsapp groups as well.
- Garbage collection is regular - the truck comes once a week.
- The school meals programme collects all food waste.
AREAS FOR IMPROVEMENT:

Disaster/Emergency Management
- School Safety Plan needs to be finalized and implemented. The School Safety Plan needs to critically examine information about the student population (such as number of students broken down by age group and sex), as the number, age, and in the case of the Adele School, ability of the students can make a significant difference in the event of an emergency.
- Teachers/staff need to be assigned specific roles.
- Regular safety drills should be re-introduced in collaboration with NODS.

Grounds and Facilities
- The cistern underground was reported to have roots which were observed to be curling around the pipes and may be damaging the infrastructure. The cistern also reportedly empties quickly.
- There is a pest issue, specifically African snails and rats.
- The administration has requested that the stylized/“breeze” blocks be replaced. This poses a hazard during extreme wind and rain events.
- The kitchen area floods easily. A curb wall was erected to mitigate flooding-related problems.
- Several cracks were observed on external walls.
- There were noticeably some tall trees in close proximity to buildings, which may pose a hazard during an extreme wind event.
- Storage building needs to be cleaned and organized properly.
- Space limitations have been reported as an issue. As there are only 5 classes, students are grouped on ability and not necessarily on age. There is no space for additional classrooms.

Health and Wellbeing
- Health records are not necessarily maintained. Health cards are only presented upon registration.
- Many students have existing medical conditions, but these records are not shared in all cases, in one specific case, a child died while at school of a pre-existing heart condition that the school was not made aware of. The school has implemented a form that asks special questions about medical conditions, but these forms are not always truthfully filled out.
- The school is not provided with specialized protective wear. The Ministry only supplies gloves. Staff are therefore encouraged to dress comfortably i.e. wear jeans so as not to get their clothes messed up.
- There is no staff room – staff eat with children; teachers have to monitor students at all times.
- There is one bathroom for staff, which is shared with ancillary staff, security, etc.

General Safety and Security
- The school is unsecured at nights and weekends, although security is supposed to be 24/7. As there is no security at nights, the lights are left on.
- The school has had 2 break-ins last year. As a result, burglar bars were requested and installed.
- Although a visitor sign in policy is in place, the school reported issues of this not being regularly enforced by the security.
- The secondary exit is kept locked as there is only one security.
- Due to the age range of children present at the school, some are at the age of sexual exploration, therefore students have to be closely monitored and the back of school is off limits for students. Additional security would help to alleviate some of the need for constant supervision. Children also reportedly have wandered off campus.
8. COSTED ACTION / IMPROVEMENT PLAN

Table 8.1 summarizes the recommended improvements and budgets for capital expenditures (remedial works, repairs, retrofitting) identified by this report. Expenditures that are expected to be managed as part of normal operations are not shown. The budgets assume a prudent level of ongoing maintenance. It should be noted that costs excluded engineering indirect costs and any local taxes.

<table>
<thead>
<tr>
<th>RECOMMENDATION</th>
<th>TASK</th>
<th>RESPONSIBLE PARTY</th>
<th>FUNDS REQUIRED ($EC)</th>
<th>TIMEFRAME SHORT-MEDIUM -LONG TERM</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disaster/Emergency Management</td>
<td>Develop Safety plans, policies and guidelines. Include in the school safety plan disaggregated data on student population (age, gender) as this will better inform disaster and emergency planning. This can be updated as needed and appended to the plan. Re-introduce emergency drills.</td>
<td>Principal and/or Safety Committee in collaboration with National Disaster Office and MOE.</td>
<td>None</td>
<td>Short Term</td>
<td>Improved safety and security.</td>
</tr>
<tr>
<td>General Safety and Security</td>
<td>Review contractual obligations of current security service providers – particularly performance clauses Explore options for other service providers by issuing a new request for proposal</td>
<td>Ministry of Education.</td>
<td>Ministry of Education to obtain.</td>
<td>Medium Term</td>
<td>Improved safety and security.</td>
</tr>
</tbody>
</table>
TABLE 8.1: COSTED ACTION / IMPROVEMENT PLAN

<table>
<thead>
<tr>
<th>RECOMMENDATION</th>
<th>TASK</th>
<th>RESPONSIBLE PARTY</th>
<th>FUNDS REQUIRED ($EC)</th>
<th>TIMEFRAME SHORT-MEDIUM -LONG TERM</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grounds and Facilities</td>
<td>Construction of storm drains and general grading of surroundings in order to prevent flooding.</td>
<td>Ministry of Education in collaboration with Department of Works.</td>
<td>$60,000</td>
<td>Short – Medium Term</td>
<td>Improved safety of Physical Plant.</td>
</tr>
<tr>
<td></td>
<td>Repair/retrofit roof covering, ceiling and roof drains to current Building Code Standards.</td>
<td></td>
<td>$48,400</td>
<td>Medium Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upgrade of doors and windows to hurricane resistant standards.</td>
<td></td>
<td>$26,200</td>
<td>Short Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undertake plumbing repairs to toilets.</td>
<td></td>
<td>$36,400</td>
<td>Medium - Long Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upgrade electrical wiring and fixtures.</td>
<td></td>
<td>$75,000</td>
<td>Long Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repairs to cracks in external and internal walls.</td>
<td></td>
<td>$46,600</td>
<td>Medium Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Painting.</td>
<td></td>
<td>$52,200</td>
<td>Short – Medium Term</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contingency</td>
<td></td>
<td>$50,000</td>
<td>Medium Term</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>$394,800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. REFERENCES

Antigua and Barbuda Country Risk Profile. Caribbean Catastrophe Risk Insurance Facility (CCRIF), 2013

Disaster Risk Management in Latin America and the Caribbean Region: GFDRR Country Notes- Antigua and Barbuda. Global Facility for Disaster Reduction and Recovery (GFDRR), 2010

The CARIBSAVE Climate Change Risk Atlas (CCCRA) Climate Change Risk Profile for Antigua and Barbuda. CARIBSAVE, 2012
10. APPENDIX 1

10.1 SAFETY ASSESSMENT

TABLE 10.1: VITAL INFORMATION TABLE

<table>
<thead>
<tr>
<th>NAME OF SCHOOL</th>
<th>ADELE SCHOOL FOR SPECIAL CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of school (Pre-school, primary, secondary, tertiary)</td>
<td>NEITHER - The facility is for students ranging from ages 5 to 20 years old</td>
</tr>
<tr>
<td>Is facility private and public?</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>Location</td>
<td>ST. JOHNS</td>
</tr>
<tr>
<td>Name of Head Teacher or Principal</td>
<td>ANDREA RICHARDS</td>
</tr>
<tr>
<td>Telephone</td>
<td>(268) 462-4627</td>
</tr>
<tr>
<td>Email</td>
<td>specialadele@gmail.com</td>
</tr>
<tr>
<td>Year building(s) constructed</td>
<td>Building constructed in 1970’s (school moved to this location in 1987).</td>
</tr>
<tr>
<td>How many buildings are contained on the school compound?</td>
<td>Four (4)</td>
</tr>
<tr>
<td>How many classrooms are within each school building?</td>
<td>5 in total</td>
</tr>
<tr>
<td>What is the total school population?</td>
<td>60</td>
</tr>
<tr>
<td>Students</td>
<td>Male: 40 Female: 20</td>
</tr>
<tr>
<td>Teachers</td>
<td>Male: 1 Female: 8 (plus 6 teaching aids)</td>
</tr>
<tr>
<td>Non-teaching staff</td>
<td>Male: 1 Female: 5</td>
</tr>
<tr>
<td>How many first aid kits are available for use?</td>
<td>2</td>
</tr>
<tr>
<td>How many fire extinguishers are installed</td>
<td>1</td>
</tr>
<tr>
<td>Was the school affected by any natural disaster in the past?</td>
<td>NOT AWARE</td>
</tr>
<tr>
<td>If yes, what type of event was it and when did it occur?</td>
<td>-</td>
</tr>
<tr>
<td>Were there any repairs as a result of the event?</td>
<td>NO</td>
</tr>
<tr>
<td>Is the school designated as an emergency shelter?</td>
<td>NO</td>
</tr>
</tbody>
</table>
10.2 PHOTOGRAPHS

- Main Outdoor Play Area
- Aluzinc Sheets Roof Covering
- Detached Timber Buildings with Lightweight Roof
DETACHED TIMBER BUILDINGS WITH LIGHTWEIGHT ROOF

ADMINISTRATIVE OFFICE ON TOP OF WATER CISTERN
MANHOLE COVER LOCATED BELOW DESK

DIAGONAL BRACING TO STRUCTURAL STEEL ROOF STRUCTURE

SOME CRACKS TO EXTERNAL WALLS
- Vent blocks and doors to open corridor – no windows
- Tall trees in close proximity to buildings
- Timber windows – to one side of building
- Corroded Electrics
- Main Entrance
- Timber Cladding in Need of Repair
- Kitchen Area Floods Easily
- Kitchen Area Floods Easily
- Kitchen Area Floods Easily
CURB WALL ERECTED TO MITIGATE FLOODING-RELATED PROBLEMS

CURB WALL ERECTED TO MITIGATE FLOODING-RELATED PROBLEMS

CURB WALL ERECTED TO MITIGATE FLOODING-RELATED PROBLEMS

CURB WALL ERECTED TO MITIGATE FLOODING-RELATED PROBLEMS
10. APPENDIX 2: NATIONAL SAFE SCHOOL PROGRAMME COMMITTEE (NSSPC) MEMBERS

COUNTRY: ANTIGUA AND BARBUDA

<table>
<thead>
<tr>
<th>#</th>
<th>FIRST NAME</th>
<th>LAST NAME</th>
<th>JOB TITLE</th>
<th>ORGANIZATION</th>
<th>CONTACT EMAIL</th>
<th>CONTACT PHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rolston</td>
<td>Nickeo</td>
<td>-</td>
<td>Ministry of Education</td>
<td>rnickeo@yahoo.com</td>
<td>721-8373</td>
</tr>
<tr>
<td>2</td>
<td>Alvacea</td>
<td>Burton</td>
<td>-</td>
<td>Ministry of Education</td>
<td>Alvaceaburton@gmail.com</td>
<td>720-7217</td>
</tr>
<tr>
<td>3</td>
<td>Desiree</td>
<td>Antonio</td>
<td>-</td>
<td>Ministry of Education</td>
<td>Zone3education@gmail.com</td>
<td>462-5972</td>
</tr>
<tr>
<td>4</td>
<td>Emil</td>
<td>Michael</td>
<td>-</td>
<td>Ministry of Education</td>
<td>EmilMichael@gmail.com</td>
<td>723-4464</td>
</tr>
<tr>
<td>5</td>
<td>E. Jonah</td>
<td>Greene</td>
<td>-</td>
<td>Ministry of Education</td>
<td>Ejonahgreene@gmail.com</td>
<td>728-0755</td>
</tr>
<tr>
<td>6</td>
<td>Priscilla</td>
<td>Nicholas</td>
<td>-</td>
<td>Ministry of Education</td>
<td>Prisca143@hotmail.com</td>
<td>722-4129</td>
</tr>
<tr>
<td>7</td>
<td>Jessie</td>
<td>Purcell</td>
<td>-</td>
<td>Ministry of Education</td>
<td>Jessiegeorge98@hotmail.com</td>
<td>771-1331</td>
</tr>
<tr>
<td>8</td>
<td>Mervin</td>
<td>Browne</td>
<td>-</td>
<td>Board of Education</td>
<td>Mbrown@apuainet.ag</td>
<td>727-6877</td>
</tr>
<tr>
<td>9</td>
<td>Kadian</td>
<td>Camacho</td>
<td>-</td>
<td>Ministry of Education</td>
<td>Kadiancamacho@yahoo.com</td>
<td>722-6541</td>
</tr>
<tr>
<td>10</td>
<td>Randel</td>
<td>Pyle</td>
<td>-</td>
<td>Ministry of Works</td>
<td>Randell.pyle@ab.gov.ag</td>
<td>764-8331</td>
</tr>
<tr>
<td>11</td>
<td>Kaye</td>
<td>Tomlinson</td>
<td>-</td>
<td>Ministry of Health</td>
<td>Dmonkay@yahoo.com</td>
<td>770-5100</td>
</tr>
<tr>
<td>12</td>
<td>Emile</td>
<td>Floyd</td>
<td>-</td>
<td>Ministry of Health</td>
<td>Emile.Floyd@gmail.com</td>
<td>764-3436</td>
</tr>
<tr>
<td>13</td>
<td>Joycelyn</td>
<td>James</td>
<td>-</td>
<td>ABUT</td>
<td>Stress_Release@yahoo.com</td>
<td>723-7214</td>
</tr>
<tr>
<td>14</td>
<td>Michal</td>
<td>Francois</td>
<td>-</td>
<td>Holy Trinity</td>
<td>Angellofrancois@gmail.com</td>
<td>732-7385</td>
</tr>
<tr>
<td>15</td>
<td>Rexford</td>
<td>Harry</td>
<td>-</td>
<td>Sir McChesney George</td>
<td>Rmharry0711@hotmail.com</td>
<td>772-0673</td>
</tr>
<tr>
<td>16</td>
<td>Alvah</td>
<td>Guishard</td>
<td>-</td>
<td>Ministry of Social Transformation</td>
<td>Alvahguishard@gmail.com</td>
<td>464-2024</td>
</tr>
</tbody>
</table>

10. APPENDIX 2:
NATIONAL SAFE SCHOOL PROGRAMME COMMITTEE (NSSPC) MEMBERS

47 | HAZARD RISK ASSESSMENT REPORT AND COSTED ACTION PLAN | THE ADELE SCHOOL FOR SPECIAL CHILDREN - ANTIGUA AND BARBUDA
<table>
<thead>
<tr>
<th>#</th>
<th>FIRST NAME</th>
<th>LAST NAME</th>
<th>JOB TITLE</th>
<th>ORGANIZATION</th>
<th>CONTACT EMAIL</th>
<th>CONTACT PHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Chevaughn</td>
<td>Burton</td>
<td>Teacher Zone One</td>
<td>S.R Olivia David</td>
<td>chevaughnburton26@gmail.com</td>
<td>789-4178 462-7400</td>
</tr>
<tr>
<td>18</td>
<td>Chelo</td>
<td>Francis</td>
<td>-</td>
<td>Ministry of Education</td>
<td>chichif@live.com</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>Dornett</td>
<td>Defoe</td>
<td>Teacher Zone Two</td>
<td>Potters</td>
<td>successful_dornett@hotmail.com</td>
<td>764-4054</td>
</tr>
<tr>
<td>20</td>
<td>Chaka</td>
<td>Grant</td>
<td>Teacher Zone Two</td>
<td>Willikies</td>
<td>chakagrant@yahoo.com</td>
<td>775-2803</td>
</tr>
<tr>
<td>21</td>
<td>Sheresa</td>
<td>Knowles</td>
<td>Teacher Zone Three</td>
<td>C.T. Samuel</td>
<td>gloriousme_454@hotmail.com</td>
<td>770-6121</td>
</tr>
<tr>
<td>22</td>
<td>Sonilda</td>
<td>Burton</td>
<td>Teacher Zone Three</td>
<td>J.T. Ambrose</td>
<td>sonildab@yahoo.com</td>
<td>773-1696</td>
</tr>
<tr>
<td>23</td>
<td>Anthea</td>
<td>Anthony</td>
<td>Teacher Zone Four</td>
<td>Mary E. Pigott</td>
<td>m.e.p.school@hotmail.com antheaanthony468@gmail.com</td>
<td>789-4718</td>
</tr>
<tr>
<td>24</td>
<td>Foster</td>
<td>Roberts</td>
<td>Teacher Secondary</td>
<td>Ottos Comprehensive</td>
<td>fosterroberts@yahoo.com</td>
<td>729-7081</td>
</tr>
<tr>
<td>25</td>
<td>Oral</td>
<td>Evanson</td>
<td>-</td>
<td>Ministry of Education</td>
<td>evansonoral@gmail.com</td>
<td>764-2550</td>
</tr>
<tr>
<td>26</td>
<td>Stacy</td>
<td>Mascall</td>
<td>-</td>
<td>Ministry of Education</td>
<td>stacymascall@hotmail.com</td>
<td>770-4436</td>
</tr>
<tr>
<td>27</td>
<td>Wendy</td>
<td>Valentine</td>
<td>-</td>
<td>Disability Association</td>
<td>wendyvalentine74@gmail.com</td>
<td>725-7260</td>
</tr>
<tr>
<td>28</td>
<td>Diana</td>
<td>Martin</td>
<td>-</td>
<td>National PTA</td>
<td>diandivine@gmail.com</td>
<td>775-1578</td>
</tr>
<tr>
<td>29</td>
<td>Eloise</td>
<td>Hughes</td>
<td>-</td>
<td>Ministry of Education</td>
<td>esilston@hotmail.com</td>
<td>782-2415</td>
</tr>
<tr>
<td>30</td>
<td>Embler</td>
<td>Spencer</td>
<td>-</td>
<td>Ministry of Education</td>
<td>1emblerspencer@gmail.com</td>
<td>783-4049</td>
</tr>
</tbody>
</table>
10. APPENDIX 3: ORGANIZATIONS CONSULTED

Antigua and Barbuda

- National Youth Council
- Antigua and Barbuda Union of Teachers
- Department of Environment
- Ministry of Education
- Central Board of Health
- Ministry of Health
- National Safe Schools Programme Committee
- Principals, Teachers
- Board of Education
- Early Childhood Unit
- Barbuda Council
- Ministry of Works
- Development Control Authority
- Antigua and Barbuda Institute of Architects
- UNDP
- National Parent Teachers Association