Available online at www.sciencedirect.com

GEOGRAPHY

www.elsevier.com/locate/apgeog

ELSEVIER Applied Geography 24 (2004) 97-117

Defining area at risk and its effect
in catastrophe loss estimation: a dasymetric
mapping approach
Keping Chen *, John McAneney, Russell Blong, Roy Leigh,
Laraine Hunter, Christina Magill

Risk Frontiers—Natural Hazards Research Centre, Macquarie University, Sydney,
NSW 2109, Australia

Abstract

Catastrophe loss estimation for natural hazards combines both hazard and exposure data.
While hazard attributes such as intensity distributions are usually represented at a spatially
explicit raster (or pixel) level, exposure data such as population, dwellings and insurance port-
folios are usually only available at spatially lumped census tracts. In current loss estimation
studies, this spatial incompatibility is often inadequately addressed and a uniform distribution
of exposure data within an areal unit assumed. As a result, loss estimation models overlook a
great deal of spatial disparity. This paper defines occupied residential area as the area at risk
and uses a dasymetric mapping approach to obtain this from areal census tracts.

Using Sydney (Australia) as an example, residential areas at risk were produced through
street buffers. The effect of incorporating area at risk in loss estimation models in this manner
was then tested for two hazards (earthquakes and hailstorms) that impose very different-
sized damage footprints. Total numbers of separate houses (as exposure data) were
represented at two hierarchically nested areal unit forms (postcode and census collection
district—CCD) and their corresponding residential area forms. The spatial distribution of
calculated losses for these different forms was then pairwise compared. For earthquakes,
estimated losses were insensitive to the manner of delineating area at risk and the use of
finer-resolution exposure data. This follows because the affected zone is much larger than the
areal unit to which exposure data are attached. Hailstorms, on the other hand, have rela-
tively small affected zones, and loss estimates at a coarse postcode level were considerably
different to those at postcode-based residential, CCD and CCD-based residential levels. Dif-
ferences between CCD and CCD-based residential area levels were relatively small in both
cases because the distribution of fine CCD units closely reflects the underlying residential
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areas. Our empirical findings suggest that improved delineation of the area at risk and
employing exposure data based on finer areal units are important for improving loss esti-
mation from catastrophic events, particularly those that affect only a small proportion of the
area under consideration. The results also have significance for other multidisciplinary stu-
dies concerned with the integration of spatially explicit environmental data and spatially
lumped socioeconomic data.

© 2004 Elsevier Ltd. All rights reserved.
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Introduction

The past few decades have seen dramatic worldwide increases in economic losses
from catastrophic natural hazards. For example, the 1992 Hurricane Andrew
(Florida) and the 1994 Northridge (California) earthquakes caused insurance losses
of US$ 15.5 billion and 12.5 billion, respectively (NRC, 1999); the 1995 Great
Hanshin-Awaji earthquake in Kobe, Japan, resulted in over 6400 casualties and
economic losses to the city of US$ 60 billion; and the 1998 Hurricane Mitch
damaged up to 70% of the infrastructure in Honduras and Nicaragua and severely
devastated the economies of all Central American countries (ISDR, 2003). In the
wake of these disasters, catastrophe loss modelling that simulates potential losses
(e.g. economic, insured, properties and human fatalities) from major hazard events
has advanced over the past decade, and now serve as an instrument for effective
risk management by both the insurance industry and government agencies (e.g.
Bendimerad, 2001; Clark, 2002; FEMA, 2002; Kunreuther & Roth, 1998; Leigh &
Kuhnel, 2001; Walker, 1995).

Catastrophe loss modelling for natural hazards comprises four major steps (Fig. 1):

e Hazard analysis: quantifies the physical characteristics of a hazard, including
probability of occurrence, magnitude, intensity, location, influence of geological
or meteorological factors.

e Exposure analysis: identifies and maps underlying elements at risk or exposures,
including the built environment and socioeconomic factors such as population
and economic activity.

e Vulnerability analysis: assesses the degree of susceptibility to which elements at
risk are exposed to the hazard. A community with strong capacities would
decrease susceptibility. A common form of vulnerability analysis uses historical
damage records to prescribe relationships between damage to dwellings and haz-
ard intensity. Different building construction classes and occupancy types will
have distinct vulnerability curves. Vulnerability curves can also be established for
socioeconomic exposures, such as population age groups, although for the time
being such relationships are not well developed.

e Risk analysis: synthesises the above three components and determines the result-
ing losses as a function of return period or as an exceedance probability.
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Fig. 1. Four major components of catastrophe loss modelling: (a) hazard analysis, e.g. intensity distri-
bution; (b) Exposure analysis, e.g. exposure data distribution; (c) Vulnerability analysis showing a vul-
nerability curve; (d) Risk analysis showing a probabilistic loss exceedance curve.

In this loss modelling framework, risk is seen a function of hazard, exposure and
exposure-related vulnerability; that is, risk = f* (hazard, exposure, vulnerability).
Analysis on the hazard versus exposure dichotomy lays the foundation for inte-
grative vulnerability and risk analyses. Since hazard and exposure data are associa-
ted with spatial and temporal non-stationarities or variations, catastrophe loss
estimation models are often developed within a geospatial analysis environment.

Loss estimation models can be improved by incorporating new findings about
hazard mechanisms and occurrence, improved classification of elements at risk
and/or locally oriented vulnerability curves. In this paper, our interest is the
spatial mismatch between hazard and exposure data: the hazard component (e.g.
ground shaking intensity in the case of earthquakes) is commonly modelled at a
spatially explicit raster level, while the elements at risk are often only available
at spatially lumped and coarse areal unit levels, such as postcodes and census
tracts (FEMA, 2002; Leigh & Kuhnel, 2001). (Exposure data at individual
address level are not usually provided for obvious confidentiality reasons.) The
latter areal units were created for administration purposes and their boundaries
lack any physical meaning for catastrophe loss estimation. This spatial mismatch
of data can be a source of error since the elements at risk are often assumed to
be uniformly distributed across a coarse areal unit and any spatial disparity
within the unit ignored. As a consequence, the entire areal unit is improperly
treated as being at risk. Since the same set of exposure data may exist at hier-
archical areal unit levels having different spatial resolutions, corresponding loss
estimates using those data could differ markedly. This paper explores the likely
magnitude of such differences.
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Fig. 2. A schematic representation of hazard intensity distributions, a postcode and identified residential
areas.

Fig. 2a shows the spatial distribution of hazard intensity within a postcode. Tra-
ditional practice attributes the intensity within the postcode to the centroid. This
oversimplification has two problems. First, because the centroid is determined by
postcode boundaries that can be arbitrary, the centroid for a polygon of irregular
shape may not necessarily even be located within the postcode! In this case, using
the hazard intensity at the centroid could be quite misleading. Second, by assuming
that the entire area of the postcode is at risk, any spatial disparity of the elements
at risk within this areal unit is ignored. In the case of residential dwellings, if the
occupied residential areas could be more accurately identified, a better estimation
of risks is guaranteed by simply disregarding non-occupied areas within the post-
code. In Fig. 2b, since the residential area is further away from the epicentre than
the centroid, a lower intensity should be assigned to the elements at risk or losses
will be overestimated. By comparison, losses will be underestimated for the situa-
tions shown in Fig. 2¢ and d.

The primary objectives of this study are: (1) to draw attention to the importance
of appropriately defining the area at risk for catastrophe loss estimation; (2) to
define occupied residential areas as the area at risk with dasymetric mapping; and
(3) to assess the effect on estimated losses of defining the area at risk and comparing
these with the exposure data re-modelled and represented in four forms—postcode,
postcode-based residential area, census collection district (CCD) and CCD-based
residential area. The Sydney region of New South Wales, Australia, is used for two
case studies. Both earthquakes and hailstorms will be considered.

Defining the area at risk with a dasymetric mapping approach

Choropleth mapping is the most popular technique for representing area-based
exposure data. An important assumption is that value at risk is spread uniformly
across each census tract. This is often far from true. For instance, the distribution
of dwellings may be unevenly scattered and/or concentrated in only a small part of
the zone, while the rest of the zone is empty. What is needed is finer-grained aver-
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aging; that is, to dis-aggregate arca-based exposure data at a finer spatial resol-
ution. One approach for this dis-aggregation is dasymetric mapping (e.g. Dent,
1996; Langford & Unwin, 1994; Longley, Goodchild, Maguire, & Rhind, 2001), an
approach that transforms data from arbitrary areal units to physical settlement
areas. An example is illustrated in Fig. 3 where a hypothetical areal map and asso-
ciated residential areas are combined to produce a new map of the residential
areas. After a GIS intersection operation, the final representation of the attribute is
divorced from the original boundaries of the census zones and properly allocated
to the residential area.

Since exposure data are often related to residential areas, denoting residential
areas as the area at risk should represent a major improvement over conventional
practice. By so doing, spatial contextures important to risk quantification are con-
ceptually embodied. In theory, residential areas could be further differentiated and
classified into land-covers and land-uses, dwelling densities, and even individual
dwellings if this were warranted for any particular application (Chen, Blong, &
Jacobson, 2003).

This paper presents an example of identifying occupied residential areas through
the use of street buffers. Occupied residential areas are assumed to be physically
linked by street networks. MapInfo-compatible StreetWorks® (MaplInfo Australia,
2001) is a detailed street database, covering all capital and major regional cities in
Australia. In urban areas, each street consists of a series of line segments, with the
start and end street addresses on either side of the segment indicated. To derive
the residential area, a distance of 100 m was used as a buffer zone on either side of
the street segment. While this distance is subjective, a conservative view was taken
to ensure the inclusion of sufficient occupied residential areas. If the separation of
two parallel neighbouring streets is less than 200 m, their buffered zone indicates
the entire area between the two streets as residential.

Spatial layers of local and national parks, lakes and rivers were also used to
refine the boundaries of residential areas. The final residential area was then con-

Socioeconomic data Occupied Data on the
on census zones residential areas residential areas

Fig. 3. Transformation of socioeconomic data from census tracts to residential areas with dasymetric
mapping. The numbers in the figure (i.e. 10, 20, 30 and 40) refer to the numbers of dwellings in each of
the four zones.
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Fig. 4. (a) Street buffer-based residential areas for the Sydney region; (b) A zoom-in of the dashed rec-
tangle area in (a). Residential areas are shown in gray, and local streets are superimposed.

verted into a raster format, with a spatial resolution of 100 m. Fig. 4a shows the
derived occupied residential areas for the Sydney region. More than 150 000 street
segments from StreetWorks® were used. A zoom-in of a small area south of the
suburb of Hornsby is shown in Fig. 4b, with local street segments superimposed.

The above approach of street buffering to derive approximate residential areas
can be easily implemented in GIS. While the approach is not immune to error, and
the buffer distance of 100 m may overestimate the true residential areas in some
areas, the transformation of areal exposure data from arbitrary areal units to the
residential area is a major improvement in representing the area at risk. In Fig. 4a,
the Sydney region covers 8879 km? whereas the derived residential area is only
1956 km*>—22.0% of the study area. Loss estimation should focus on this occupied
sub-set.

Case study 1: earthquake loss estimation
Hazard simulation and vulnerability curve

The Sydney region is susceptible to earthquakes, and the 1989 Newcastle Earth-
quake (epicentre 120 km north of Sydney) produced insurance losses of around
AUSS 1 billion (Blong, 1997). Our main concern here is to demonstrate how loss
estimates vary with exposure data represented in different forms, given identical
hazard simulation characteristics. A modified Mercalli intensity (MMI) scale
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(Dowrick, 1996) was employed to indicate the intensity of ground shaking resulting
from an earthquake of local magnitude 6.0 (ML = 6.0) (cf. ML = 5.6 for the 1989
Newcastle Earthquake) and with a focal depth of 15 km (D =15. cf. D =11 for
the 1989 Newcastle Earthquake). Complications due to local soil amplification and
geology are ignored. The attenuation function proposed by Gaull, Michael-Leiba,
and Rynn (1990) for southeastern Australian continent was adopted.

MMI = 1.5ML — 3.9log;o((D* + R*)*%) 4+ 3.9

where R is the horizontal distance from the epicentre. The MMI distribution is
mapped in Fig. 5a. It was assumed that scenario earthquakes can occur at any
location within the study area with the same symmetric seismic attenuation func-
tion. Deterministic hazard simulations were implemented in a raster GIS environ-
ment. To reduce computing time, a total of 22400 scenario earthquakes were
placed at a 140 km x 160 km grid extending well beyond the study area. If the epi-
centre is located beneath the built-up area, the risk (estimated losses) will be very
large; on the other hand, if the epicentre is located far from residential areas, the
risk will be minimised.

The likelihood of buildings being damaged is related to factors such as type,
materials, age and maintenance. In this case study, a hypothetical exponentially
shaped vulnerability curve (Cochrane & Schaad, 1992) linking cost of damage to
ground shaking intensity in MMI units was used (Fig. 5b). Losses are expressed as
the percentage of total sum insured. Vulnerability curves are usually established
through analysis of insurance losses from historical hazard events or on the basis
of expert engineering experience and judgment. By combining the intensity distri-
bution in Fig. Sa with the vulnerability curve, the distribution of potential losses
surrounding the epicentre is mapped in Fig. 5c; the shape is highly peaked and has
a radius of impact (MMI > 5) of around 100 km.

Separate houses as elements at risk

In this case study, separate houses were chosen as the insured elements (assumed
portfolio data). Other residential building-types such as separate detached houses,
flats, industrial and commercial buildings were not considered. The numbers of
separate houses are available from CDATA 2001 (Australian Bureau of Statistics,
2002) at two areal unit levels: postcodes and CCDs. CCDs are the smallest areal
unit used for reporting census data. The boundaries of postcodes and CCDs are
spatially compatible as postcodes are derived from aggregating CCDs. There are a
total of 255 postcodes (Fig. 6a) and 6674 CCDs (Fig. 6¢) within the study area.
The characteristics of two areal units and their associated portfolio data are shown
in Table 1. The total number of separate houses is 919 8§98, and an average sum
insured of AUS$ 200 000 was assumed. Table 1 indicates slight differences in the
total number of separate houses at the two areal unit levels; our results are insensi-
tive to this small difference of 40 houses or 0.004% of the total number.

Fig. 6 shows the portfolio data in the following four forms: (1) uniform over
each postcode (Fig. 6a); (2) postcode-based residential area (Fig. 6b); (3) uniform
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Fig. 5. (a) Prescribed intensity distribution about the earthquake epicentre at (x = 0, y = 0); (b) A hypo-
thetical vulnerability curve linking insured losses as a percentage of total sum insured; (c) Combination
of (a) and (b) showing the distribution of potential losses with distance from the epicentre.
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Fig. 6. At-risk exposure data (separate houses) are expressed as four forms. (a) 255 postcodes for the
Sydney region; (b) A zoom-in of the dashed rectangle area in (a). Residential areas are superimposed
with postcode boundaries, and the residential area within each postcode indicates the number of houses
in the postcode; (c) 6674 CCDs; (d) A zoom-in of the dashed rectangle area in (c). Residential areas are
superimposed with CCD boundaries, and the residential area within each CCD indicates the number of
houses in the CCD. The boundaries of postcodes and CCDs are hierarchically nested.
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Table 1

Statistical characteristics of areal units and portfolio data (i.e. separate houses)

Areal Number Area (km?) Number of separate houses

units Total Min. Max. Mean Std. Total Min. Max. Mean Std.
dev. dev.

Postcode 255 8879.0 0.581 7583 34.8 96.0 919898 3 19118 3607 3364

CCD 6674 8879.0 0.002 605.6 1.3 11.5 919858 0 663 138 93

over each CCD (Fig. 6¢); and (4) CCD-based residential area (Fig. 6d). Each form
was converted to a raster format with a spatial resolution of 100 m. Among these
four forms, it is clear that the postcode form represents the coarsest resolution
while the CCD-based occupied residential area form represents the ideal and most
detailed portfolio data format for loss estimation. Because some CCDs are very
small and cannot be represented at a spatial resolution of 100 m, a total of 23 and
63 houses could not be included in the CCD form and CCD-based residential area
form, respectively.

Catastrophe losses were calculated for each scenario earthquake over all post-
code and CCD units and the values assigned to the earthquake epicentre. To exam-
ine the spatial difference in the estimated losses, the following six comparisons were
conducted: (1) at a postcode level and a postcode-based residential area level; (2) at
a CCD level and a CCD-based residential area level; (3) at a postcode level and a
CCD level; (4) at a postcode-based residential area level and a CCD-based residen-
tial area level; (5) at a postcode level and a CCD-based residential area level; and
(6) at a postcode-based residential area level and a CCD level. For each pairwise
comparison, the loss estimation difference (LED) for each earthquake location was
calculated using the following equation:

LED; = 100 x (Ly; — Ly;)/Ly;

where L,; and L,; are losses calculated at location (epicentre) i
(i=1, 2,..., 22400) using the first and the second representation forms of the
exposure data, respectively. The loss estimation difference (%) is relative to the loss
estimated in the first form, and negative differences imply that the loss estimate in
the second representation was higher. Negative difference is referred to as under-
estimation.

Loss estimation differences

Fig. 7a shows the distribution of estimated losses using the portfolio data at the
postcode level. Estimated losses per scenario event ranged from AUSS$ 3.7 billion
to 21.6 billion. The largest losses are naturally for the earthquakes that occur

»
!

Fig. 7. (a) Distribution of losses calculated at the postcode level for scenario earthquakes occurring at

different locations; (b) Distribution of grouped loss estimation differences between a postcode level and a
postcode-based residential area level.



K. Chen et al. | Applied Geography 24 (2004) 97-117 107

(a)

Total loss
(Billion §)

7-48
£-6.0
.0-7.1
1-82
2-93
3-104
10.4-11.6
E116-127
127 -138
B 13.8-14.9
B 14.9-16.0
B 16.0-17.2
H17.2-183
Bl 183-194
B 19.4-205
M205-216

Loss estimation
difference (%)
[ (-3.2%. -2.0%)
[ [-2.0%. 0.0%)
[0.0%, 2.0%)
1 12.0%, 3.0%)]




108 K. Chen et al. | Applied Geography 24 (2004) 97-117

Table 2
Difference ranges of six comparisons in earthquake loss estimation
Comparisons Difference ranges
(a) Postcode level and postcode-based residential area level [—3.2%, 3.0%)]
(b) CCD level and CCD-based residential area level [—0.1%, 0.1%)]
(c) Postcode level and CCD level [—4.6%, 4.2%)]

]

(d) Postcode-based residential area level and CCD-based residential area [—1.4%, 1.7%
level

(e) Postcode level and CCD-based residential areal level [—4.6%, 4.3%)]
(f) Postcode-based residential area level and CCD level [—1.4%, 1.6%)]

beneath the densely populated parts of city. Fig. 7b shows the spatial distribution
of the loss estimation differences between a postcode level and a postcode-based
residential area level. Differences are small and range from —3.2% to 3.0%. The
difference ranges of the other five comparisons in Table 2 also indicate only minor
underestimations and overestimations.

Underestimations and overestimations are possible depending on the location of
the earthquake in relation to residential areas. If the earthquake epicentre lies
within or near a densely residential area, then the finer representation will produce
higher losses than if these same number of houses were spread uniformly over a
coarse postcode (see Fig. 2). Overestimations are also possible and occur in non-
residential areas (Fig. 7b). In fact, for non-residential areas, the numbers of dwell-
ings at risk and associated contributing losses should be zero.

Overall, using finer-resolution exposure data in earthquake loss estimation does
not appear to dramatically affect the result. We attribute this to the very large foot-
print of the earthquake. For an earthquake with a radius of impact of 100 km, the
corresponding circular areal extent of impact is up to 31415 km?”. In this case
study, scenario earthquakes at any location would always affect the overwhelming
majority of the study area, and the improvement of representing exposure data at
detailed local levels in producing aggregated and global loss estimates is compro-
mised. The results may be different if the effect of amplification of ground shaking
due to local soils and geological changes were to be taken into account.

The above result is application-specific. For hazards such as hailstorms and tor-
nadoes that are associated with smaller, more narrowly defined footprints, differ-
ences in loss estimates may be more sensitive to the representation of residential
areas, particularly at the urban fringe. We explore this possibility in the next sec-
tion using a hailstorm case study.

Case study 2: hailstorm loss estimation
Hazard loss potential distribution

Hailstorms in the Sydney urban areas often cause substantial damages. The
April 1999 Sydney hailstorm, for example, caused an estimated total insured loss
of AUSS$ 1.6 billion, making it the most costly natural disaster in Australia (Leigh
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Fig. 8. Distribution of loss potential from a scenario hailstorm, similar to that in Fig. 5c.

& Kuhnel, 2001). Hailstorm loss modelling requires a comprehensive set of physi-
cal data that characterise the spatial and temporal distribution of hailstorm attri-
butes such as direction, path, shape and areal extent of the storm, hailstone size,
occurrence season, date and time. These variables are usually generated in a stoch-
astic matter with reference to regional hailstorm history and other climatological
information (e.g. El Niflo—southern oscillation cycle) (Leigh & Kuhnel, 2001).
However, to address the key theme of this paper, the detailed simulation of hail-
storms was not used. Scenario hailstorms with a hypothetical loss potential shown
in Fig. 8§ were placed on the 140 km x 160 km grid deterministically in a similar
manner as was done with the earthquake study. The distribution of loss was
assumed to follow a lognormal function (Vose, 2000), with a SW-NE oriented
elliptical footprint (semi-major axis 25 km and semi-minor axis 10 km) and
maximum loss percentage for buildings (claim % of the total sum insured) at a dis-
crete 1 km x 1 km grid level of 3.5%. These characteristics are broadly consistent
with those of severe Sydney hailstorms such as the March 1990 and April 1999

events (Andrews & Blong, 1997; Leigh & Kuhnel, 2001).
Hailstorm loss estimates were calculated using the same set of exposure data

(separate houses) at the four representation forms as with earthquakes, and then
cross compared. By comparison with earthquake example discussed previously, the
differences are striking (Table 3). Each pairwise comparison is discussed below,
staring with the comparison with loss estimates at the coarsest level and the most
detailed level.
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Table 3

Difference ranges of six comparisons in hail loss estimation

Comparisons Difference ranges
(a) Postcode level and postcode-based residential area level [—159.5%, 99.6%]
(b) CCD level and CCD-based residential area level [—83.0%, 96.5%]
(c) Postcode level and CCD level [—152.9%, 98.3%)]

(d) Postcode-based residential area level and CCD-based residential area [—41.7%, 93.0%)]
level

(e) Postcode level and CCD-based residential areal level [—161.3%, 99.5%]
(f) Postcode-based residential area level and CCD level [—171.1%, 95.3%)]

At a postcode level and a CCD-based residential area level

Fig. 9a shows the spatial distribution of estimated losses using the portfolio data
at the CCD-based residential area level—the finest resolution employed in this case
study. Depending on the location of the hailstorm, losses range from below AUS$
1 million to 600 million. Fig. 9b shows the distribution of loss estimation differ-
ences on a pixel basis between a postcode level and a CCD-based residential area
level; differences range between —161.3% and 99.5%. Fig. 9c maps the same infor-
mation using the six difference categories defined in Table 4. For the areas of each
group, mean absolute losses estimated at a CCD-based residential area level and at
a postcode level, and their corresponding differences are shown in Fig. 10. As the
percentage of underestimation and overestimation increases, the difference of mean
absolute losses shows an escalating trend. For example, the large underestimation
group (<—50.0%) has an absolute mean losses difference of AUS$ 29.7 million.

Fig. 9c shows the areal proportions of the most extreme underestimation and
overestimation groups to be substantial, occupying almost one-third of the study
area (31.8%, see line (e) in Fig. 11). The large underestimation groups (estimates at

£
g

23
PITEITLEE @

gERatagREINEE

NRRRRREEREO0 )]
§935285R3BER05L- |

(a) (b)

Fig. 9. (a) Distribution of losses calculated at the CCD-based residential area level for scenario hail-
storms occurring at different locations; (b) Distribution of continuous loss estimation differences between
a postcode level and a CCD-based residential area level; (c) Distribution of grouped loss estimation dif-
ferences between a postcode level and a CCD-based residential area level.
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Table 4
Six groups of loss estimation differences
Groups Difference ranges
Underestimation Large <—50.0%
Medium [—50.0%, —20.0%)
Small [—20.0%, 0%)
Overestimation Small [0%, 20.0%)
Medium [20.0%, 50.0%)
Large >50.0%

a postcode level appreciably less than those at a CCD-based residential area level)
are concentrated around Picton, Campbelltown, Katoomba, Gosford and Wyong.
These regions are typically away from the city centre and located at the urban frin-
ges between residential and non-residential areas (e.g. national parks). While loss
modelling should concentrate on the residential areas only, when portfolio data at
the coarse postcode level are used, some proportions of houses within postcodes
are incorrectly assigned to non-residential areas.

For inner city suburbs dominated by continuous residential areas, loss esti-
mation differences are much smaller because the chance of mis-allocating propor-
tions of the portfolio to non-residential areas is much smaller than at the urban
fringes. This result suggests that when scenario hailstorms are centred over exten-
sive and continuous residential areas such as inner city suburbs, loss estimation
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the CCD-based residential area level and at the postcode level. The difference of their absolute mean los-
ses is indicated at the right-hand y-axis.
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(a): comparison between a postcode level and a postcode-based residential area level; Line (b): compari-
son between a CCD level and a CCD-based residential area level; Line (c): comparison between a post-
code level and a CCD level; Line (d): comparison between a postcode-based residential area level and a
CCD-based residential area level; Line (e): comparison between a postcode level and a CCD-based resi-
dential area level; Line (f): comparison between a postcode-based residential area level and a CCD level.

should be largely indifferent to whether the portfolio data are employed at a post-
code level or a CCD-based residential area level.

On the other hand, significant overestimations occur for storms centred within
national parks (e.g. the Wollemi National Park in the north, Ward Park in the
west) and non-residential areas (e.g. east of Picton). Homogeneity assumed at the
coarse postcode level allocates portfolio data to these non-residential areas, incor-
rectly attributing larger loss estimates for these areas. When portfolio data at the
CCD-based residential area level are used, loss estimation disregards the coarse size
and the shape of postcodes, and reflects the true location of the dwellings more
realistically.

At a postcode level and a postcode-based residential area level

In Fig. 12a, the overall spatial distribution of underestimation and over-
estimation groups is similar to that illustrated above between a postcode level and
a CCD-based residential area level. Similar reasoning can be applied to explain
this. When postcode-based portfolio data are used in loss estimation, some separ-
ate houses are wrongly assigned to non-residential areas. The result is smaller los-
ses at continuous residential areas and larger losses for non-residential areas and
national parks.

At a CCD level and a CCD-based residential area level

Fig. 12b shows the spatial distribution of grouped loss estimation differences
between a CCD level and a CCD-based residential area level. The range of loss
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Fig. 12. Spatial distribution of six loss estimation difference groups for scenario hailstorms. (a) Compari-
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estimation differences is relatively small; the mean percentages of loss estimation
difference for small underestimation and overestimation groups are only —1.4%
and 3.0%, respectively. A total of 95.0% of the study area belongs to these small
difference groups (line (b) in Fig. 11). This is attributed to the fact that the fine
resolution of CCDs reflects the general distribution of residential areas quite well
(compare Figs. 4a and 6c). Recall that the average size of CCDs for the entire
study area is 1.3 km?, and the size of CCDs for the concentrated residential areas
is even smaller. For distant national park areas with relatively coarse CCD units,
loss estimation differences could still be large, but the area affected is small—only
0.9% of the study area is associated with the large underestimation and over-
estimation groups (line (b) in Fig. 11). Therefore, for simulated hailstorms centred
near residential areas (e.g. inner city suburbs), there appears to be little benefit in
using CCD-based residential data over CCD level data.

At a postcode level and a CCD level

Fig. 12c shows the spatial distribution of grouped loss estimation differences cal-
culated from postcode level and CCD level data. The patterns are extremely similar
to those between a postcode level and a CCD-based residential area level in Fig. 9c.
The areal proportions of each difference group at these two pairwise comparison
levels are also closely matched (line (c) in Fig. 11). This is not surprising given the
small difference of loss estimation between a CCD level and a CCD-based residen-
tial level shown in Fig. 12b. From here, we can conjecture that the finer size of
CCD also plays an important role in improving loss estimation.

At a postcode-based residential area level and a CCD-based residential area level

Fig. 12d shows the distribution of grouped loss estimation differences between a
postcode-based residential area level and a CCD-based residential area level. A
total of 70.6% of the study area is subject to small underestimation and over-
estimation groups. There are no areas for the large underestimation group (line (d)
in Fig. 11). Providing both the postcode- and CCD-based portfolio data are always
confined to the residential area, medium and large loss estimation differences are
directly ascribed to the difference of spatial resolutions or areal sizes with which the
original portfolio data are associated.

At a postcode-based residential area level and a CCD level

The general distribution of grouped loss estimation differences between a post-
code-based residential area level and a CCD level shown in Fig. 12e¢ is similar to
that in Fig. 12d. The areal proportion of each difference group at this pairwise
comparison level is also very similar to the previous case (line (f) in Fig. 11 is clo-
sely aligned with line (d) in Fig. 11). This is understandable given the pattern
demonstrated above between a postcode-based residential area level and a CCD-
based residential area level, and the small loss difference between a CCD level and
a CCD-based residential level. Nevertheless, this comparison is important as mov-
ing from postcode level exposure data to postcode-based residential area level or
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CCD level data are the two most likely options for improving many existing loss
models. From a practical perspective, residential areas can be readily derived, but
portfolio data from the insurance industry are not often available at a CCD level.
If the difference in this comparison is minor, it implies that incorporating the
residential area at risk at the postcode level is effective and sufficient. However, the
major loss estimation differences shown here again highlight the importance of
refining exposure data at a finer areal unit.

Discussion

This study has examined one important aspect of catastrophe loss estimation,
the delineation of the area at risk and its effect in loss estimation. GIS-based catas-
trophe loss estimation models are increasingly employed for tasks such as estimat-
ing probable maximum losses and setting risk premiums. Current loss estimation
practice largely uses portfolio data at postcode or census tract levels; it is logical to
anticipate that a better loss estimation result can be achieved through a more accu-
rate definition of the area at risk. In each case studies, the true residential area
represented only 22.0% of the entire study area. Natural hazards often have the
same areas at risk (i.e. occupied residential areas) and once these areas have been
delineated, it is convenient to use them for estimating losses from a range of natu-
ral hazards, such as thunderstorms, bushfires and volcanic eruptions. This idea
could be extended to assess the potential losses associated with other types of port-
folio data. If, for example, an industrial portfolio data set is used, the delineation
of industrial land use is likely to be helpful.

With consistent and simplified hazard simulation conditions for scenario earth-
quakes and hailstorms, loss estimation differences using portfolio data at different
representation forms have been compared. Due to the large footprint of earth-
quakes, loss estimation at a regional scale is relatively insensitive to the manner in
which the area at risk is defined. However, some differences of loss estimation do
exist, both spatially and quantitatively. If more hazard factors (e.g. local soil con-
ditions in the case of earthquakes) were to be incorporated, the outcome could be
quite different.

Loss estimations are commonly conducted at hierarchical areal unit levels, and
the results are not always invariant. Given the large loss estimation discrepancies
calculated at different census-based areal unit levels in the hailstorm case study
(e.g. Fig. 12¢), losses for the coarse areal units (e.g. postcode) would be better
derived from loss estimates at finer areal unit levels (e.g. CCD). Such a bottom-up
scaling approach can ensure the estimated losses are not heavily affected by coarse-
grained averaging. In the US, HAZUS™ (FEMA, 2002) uses census tract as a basic
areal analysis unit. Because of its relatively coarse size (for example, the State of
California has 5858 census tracts with an average size of 70.0 km?), loss estimates
at a census tract level could be derived from and compared with the losses esti-
mated at still finer areal unit levels (e.g. census block groups), if related exposure
information is indeed also available at this level.
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It is recognised that the delineation of occupied residential areas is subject to
uncertainty. In this study, a conservative view was taken to derive approximate resi-
dential areas as the area at risk. Both street data and exposure data collected in 2001
provided a consistent temporal representation. For loss estimation at a regional
level, commonly available and finer-resolution spatial data, such as the topologically
integrated geographic encoding and referencing (TIGER)/Line™ data and SPOT-5
imagery (with 2.5 and 5-m spatial resolutions in a panchromatic band, 10-m spatial
resolution in multispectral bands, and wide swath), would enable the delineation of
residential areas with greater accuracy. Theoretically, as more detailed exposure data
are derived and used, more accurate results are possible. Sensitivity analyses allow
us to choose the most cost-effective spatial representation level. An in-depth and sys-
tematic examination of the scale-dependency of socioeconomic data at different rep-
resentation areal levels (e.g. Chen et al., 2003; Fisher & Langford, 1996) and its
effect in loss estimation modelling using methods such as modern geostatics, remains
for future research.

The applications of the approach demonstrated here go well beyond catastrophe
modelling. Broadly speaking, this can be important for many multidisciplinary stu-
dies investigating “‘environment-human” interactions, where a successful integration
of spatially explicit physical environmental data and spatially lumped socioeconomic
data are essential. For example, in the estimation of population at risk from
environmental and technological hazards such as industrial chemical releases (Cutter,
Holm, & Clark, 1996; Walker, Mooney, & Prattes, 2000), or from the spread of
diseases (Lawson et al., 1999), better delineation of areas at risk and effective spatial
analysis will increase the objectivity of environmental impact assessments.

Conclusion

As an effort towards spatially integrated risk science, defining the meaningful
area at risk and effectively representing the spatial distribution of exposure data is
important. Four main findings of this study are summarised as follows:

e To reconcile spatially explicit hazard data and spatially lumped exposure data in
a GIS-based loss estimation methodology, the exposure data at arbitrary areal
unit levels can be transformed into occupied residential areas using a dasymetric
mapping approach. For regional loss estimations, the occupied residential area
as the area at risk is both rational and viable.

e The effect of incorporating the area at risk in catastrophe loss estimation is
application-specific. For earthquakes with large footprints compared with the
areal unit at which the exposure data are represented, the effect of postcode aver-
aging is small.

e For hailstorms with relatively small footprints, differences were significant.

e Loss estimation differences between a CCD level and a CCD-based residential
area level were relatively small because the distribution of fine-size CCDs for the
study area reflects the underlying residential areas.
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